
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 6 June 2020 | ISSN: 2320-28820

IJCRT2006105 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 757

Implementation of Read DID UDS Service based

on AUTOSAR

MADAN MOHAN N

MTech Student in VLSI
Design and Embedded
System, School of Electronics

and Communication,

REVA University

Bangalore India

Abstract—The AUTOSAR is a standard platform on which the

future vehicle applications are implemented and it minimizes the

current barriers between functional domains. The unified
diagnostic services (UDS) based on AUTOSAR software

architecture is implemented. The work include implementation of

one of the UDS Service Read Data By Identifier and reading

multiple Data Identifier(DID) in a single request which is provided

in DCM(Diagnostic Communication Manager).And Implemented

service is tested using CANoe.

Keywords— UDS, DCM, Data Identifier,AUTOSAR, CANoe

I. INTRODUCTION

The Automotive Industry due to stringent legislative

emission norms and due to lot of competition, embedded
system took major role in automotive control this embedded
system were called ECU(Electronic control unit) for
example Engine ECU have process control over engine
functionalities like exhaust system, injection system, ABS
ECU to have control of braking system ,Radar and
entertainment ECU for entertainment purpose and so on.
Today in an average car more than thirty five ECU’s will be
present. These ECU are embedded system means hardware
and software to release the functionalities which is intended
to do. Initially each company use to have their own software
architecture for their ECU, but now a days all the car
manufacturer follows single software architecture foe their
ECU’s called as AUTOSAR. AUTOSAR stands for
Automotive Open Software Architecture. Depending on
different functionalities ECU software consist of different
packages for example COM stack handles inter ECU
communication . Similarly tester related communication
handled by AUTOSAR package called as DCM (Diagnostic
communication manager). An external tester tool is
connected to ECU in order to retrieve some information
from ECU or to write something on ECU or to trigger some
events on ECU , this happens during the UDS protocol in
service request and response format . In each ECU particular
software intended for tester ECU package ,DSP takes
request from the tester , DSD process the request and
accumulate the response and sends back the proper response
to tester. These functions are done by the module called
DCM. In Diagnostic module contains different service. This
paper deals with implementation of Diagnostic Read Data
Identifier Service. Generally tester are interested in reading
multiple Data Identifier at a time but CAN communication
protocol supports only 8bytes of data to request. So this
paper gives idea of requesting multiple DID’s in a single
request through CAN communication protocol.

Dr. BHARATHI S H

Professor School of
Electronics and
Communication,

REVA University

Bangalore India

II. CAN DIAGNOSTIC STACK IN AUTOSAR

A. Diagnostic Stack and Communication Path

Tester and DCM happens via communication stack

part which implements a communication protocol like

Ethernet ,FlexRay, CAN etc. In this paper we have used

CAN for Communication protocol . So this DCM along

with part of communication stack together is called Diag

Stack DCM handles service protocol like UDS, remaining

layers handles communication protocol like CAN . When

we relate the DiagStack layers with the OSI model layers

then Can driver layer represents physical layer ,then CAN

Interface layer represent data link layer , then CanTp

represents Transport layer, PduR layer represent network

layer and DCM layer represents application and session

layer . If the Diag Stack is explained in OSI model

terminology then each layer excepts data packet from the

upper layer called Service Data Unit (SDU) and then adds

its own protocol control information(PCI) to SDU and

forms Protocol Data Unit (PDU) and send it down to

further lower layer. This PDU becomes SDU for the

lower layer and lower layer adds its own PCI to make its

own PDU and so on. From this it clears that PDU is

different for each module of the DiagStack. For DCM

module it’s called I-PDU which is complete service

request message or response message this I-PDU is

present in DCM buffer. In PduR module it is also called

I-PDU its just routes the PDU without any modification.

In CanTP module this I-PDU will be seen as N-SDU.

CanTP handles segmentation of huge data into smaller

chunks fit for data length of underlined communication

protocol. CanTp breaks the service message which is

same as N-SDU into smaller chunks and adds its own N-

PCI as defined. And forms N-PDU. This N-PDU act as

Data field for underlying communication protocol which

is CAN. N-PDU can be maximum of 8 bytes. One N-

SDU is broken into multiple N-PDU which will be

converted into multiple frames for lower layers. CanTp

module handles multi frame communication in

AUTOSAR. This N-PDU moves to Data Link layer or

CanIf(Can Interface) and acts as L-PDU and gets its PCI

to become its L-PDU.L-PDU is consist of CAN message

Id , Data Length Code, and the actual data .And this L-

PDU is transferred to tester through CAN bus

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 6 June 2020 | ISSN: 2320-28820

IJCRT2006105 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 758

III. FLOW CONTROL

A. Flow Control 1
It is important to know about flow control frames

because the Read Data Identifier service can be used to

read multiple DID at a time. But as a known fact CAN

communication protocol cannot handle more than

8bytes.So in ordered to make request the service with

multiple Data Identifier Flow control frame is used.

Flow control is a mechanism of communicating huge

chunks of data between ECU and tester by means of

single frame or multiple frame. This mechanism is

described in ISO15765 protocol and handled in CAN-

TP module in autosar architecture. There are 4 types in

Flow-Control frame they are Single Frame(SF), First

Frame(FF), Consecutive Frame(CF) and Flow Control

Frame. The sequence of flow control between tester and

ECU 1. The size of N-SDU is less than data limit of

frame, since we are using CAN data limit is 8 bytes. In

this case we use single frame. The transmitter sends

entire data in a single frame to the receiver. 2. The size

of N-SDU is greater than data limit. In this case multi-

frame communication is used. The N-SDU is divided

into multiple chunks with each piece after applying

N_PCI after forming N-PDU can fit in one frame of

underlying communication protocol and transmitted one

by one until complete data is transmitted successfully.

The transmitter sends first piece as a first frame to the

receiver and the receiver responds the flow control

frame to the transmitter and then transmitter sends

series of consecutive frames one after the other in the

correct order to the receiver. Each consecutive frame

carries one piece of N-SDU respectively

B. Flow Control 2
In a multi-frame communication initiated by the sender

with a first frame the receiver needs to tell how the flow

of consecutive frames need to be sent to the receiver.
There are various parameters to be considered like, does

the receiver has enough memory for complete N-SDU
and rate at which consecutive frames must be

transmitted and so on. All these information needed for

controlling flow of frames need to be communicated
from the sender to the receiver. Hence the flow control

frame. Consider the data field of flow control frame is

always 3 bytes. The higher nibble of MSB is index.
Index for flow control frame is 3 or 0011 in binary. The

lower nibble of MSB is flow status. It can have 3
possible values. They are 0, 1 and 2. 0 represents clear

to send the consecutive frames, 1 represents wait for

next flow-control frame so the sender does not send any
consecutive frame and waits for one more flow control

frame from the receiver. And 2 represents abort the

multi-frame communication. The 2
nd

 byte of flow

control frame is block size. This field is significant only

when the flow status value is 0. If FS=0 and BS=0 that
means send all the consecutive frames till complete N-

SDU is communicated. Receiver makes block size as 0
only when the buffer has a free space to accommodate

complete N-SDU. On the other hand if FS=0 and BS=N

that means send N consecutive frames and wait for next
flow control frame. For example if block size is 5 than

it means sender can send 5 consecutive frames and wait for

the receiver to send one more flow control frame. This

happens when the receiver has one free space in its buffer

but not so much as to accommodate complete N-SDU. So

depending on how much free space is present it computes

how many consecutive frames can be taken in and puts that

number as block size. Note that when BS is non zero than

then the BS has no significance. Last byte is called ST min

which stands for minimum separation time. This field tells

what should be the minimum time gap between consecutive

frames. Value from 1-127 specify number of milliseconds

delay between consecutive frames. Values from 241-249

specify delay increasing from 100ms to 900ms.
The purpose of this Flow Control concept in this research

work is because of we are reading multiple DID. Thus Can

Communication protocol will handle 8bytes of data at time

the request message will contain more than 8bytes of data so

this flow control concept is important.

IV. UDS SERVICE

A. Introduction to UDS

With rapid implementation of electronic embedded systems

in vehicles, the need to track and control vehicles different

parameters was important. Thus diagnostic systems were

developed so that clients could detect the fault in the vehicle

by connecting their diagnostic tester to ECU. But there are so

many manufacturers in the world like BMW, Volkswagen,

and Ford and so on where each brand will have its own

architecture and software’s in its ECUs. So it’s not possible

to make tester communication language for each car brand. In

order to make sure that all brands cars can communicate with

the single generic testing tool SAE came up with the standard

protocol for tester communication. This protocol is named as

unified diagnostic services. Every ECU present in every car

must be able to communicate with the tester tool as per this

protocol. Tester can trigger various actions in the ECU.

When I say action it can be requesting data, writing some

data, running tests on the car component and getting its result

back, flashing a program in ECU, clearing the memory,

setting a schedule and many other things. A tester triggers

these in the form of service request. Since the tester request

for the service it is called a client and the ECU receives the

request and provides the service. Hence the ECU is called

server. So tester and ECU is present in client-server topology

and the UDS is nothing but the collection of diagnostic

services which can be requested by the tester as client and

performed by ECU as a server. UDS defines the available

services, request message, response message, timing

parameters and services handled by the tester and ECU. ISO

I14229 is a UDS protocol is published in 5 documents where

part 1 contains all the details of UDS services.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 6 June 2020 | ISSN: 2320-28820

IJCRT2006105 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 759

B. UDS Request Message Format

Request message is always from client to the server.

UDS is a collection of diagnostic services. Each service

has a service identifier assigned to it. This service

identifier is of 1 byte in length. The range of request

service id is 0x00 to 0x3E. By this service id the server

understands which service is requested by client. For

example, if the SID is 0x22 then requested service is

read data by identifier or if the SID is 0x31 then the

requested service is called routine control. This SID is

always the 1
st

 byte of the service request message which

is a mandatory field for all the request messages in UDS.

The optional field is called sub function whose length is

also 1 byte and the value of which tells the server for the

requested service which sub functionality is requested.

For example for the routine control service (0x31) sub

function 0x01 is to start the routine, sub function 0x02 is

to stop the routine. Sub function 0x03 is to request

routine results. All these service belong to single service

called routine control. But to make the server understand

what control is needed different sub function are

described in the UDS. Sub functions are needed for

some selected services only. Services like RDBI, WDBI

are also there which does not require sub function. Sub

function is an optional field in the service request

message. The data identifier field is of 2 byte length. In

UDS the client and server only communicate numbers. If

you want to read the information engine speed from the

tester then you cannot put the string “engine speed” in

the requested message. So for all the data elements

which the tester may read must be assigned a number

already. This number is identifier for that data element.

In UDS this identifier number is of 2 bytes length. This

number is called data identifier or DID. Let’s say

0x1234 is the number assigned to engine speed. Then

both tester and ECU knows that they are talking about

engine speed. Likewise different data elements are

predefined with data identifiers in both server and client.

But this assignment must match with both client and

server. So in onboard diagnostics these DIDs are

standardized globally. In UDS car manufactures define

their own DIDs, only tester tools from the OEMs can

read these DIDs.

Service Identifier

Data oriented DID

Routine control RID

The purpose of the identifier remains the same. There
are services that do not have DID field. So this is also

optional field. Single or multiple DIDs can be present in

the single service message. Next is data record field is

optional as per the service requested. For example read

data by identifier does not require data record field in its

service request. Whereas, write data by identifier needs

it. After mentioning the data identifier, you need to tell

the server what data value has to be written to that

element. For example the data identifier 0x9876

represents vehicle speed limit and its tester wants to

change its current value then you also need to specify

what new value has to be stored in data element. Data

identifier tells what data element is referred. Data record

specifies what new value has to be stored in that data

element. In general, data record can be considered as

Meta data of DID and it is mandatory for some specific

services only.

V. IMPLEMENTATION METHOD A.

Required Configuration To Test Read DID

The CAN driver module is meant for the hardware

access and provides a hardware independent

communication to the upper layer. In the Can module

configuration Can Controller baudrate is configured , Can

transmitting and receiving i.e Tx and Rx processing type

is configured. The Configuration of hardware objects like

CanHRO with CanID value as 0x72B and its type

configured as standard and CanHTO with CanID value as

0x62B and it is also standard type. For remaining

communication layer like CanIF, CanTP, PDUR proper

Rx and Tx CanID and its type should be mapped and that

must be taken care. The DCM module consist of three sub

modules those are Diagnostic Session Layer, Diagnostic

Service Dispatcher and Diagnostic Service Processing

sub module. The DSL will ensures data flow of

diagnostic requests and responses, and its take care of

diagnostic protocol timing and manages diagnostic states

like diagnostic session and security. In DSD , there will

be container namely service table in which all the testing

services needed to be configured . In this case Read DID

service need to be configured with its service identifier

value i.e 0x22. The DSP sub module will look into the

actual diagnostic service requests. In the DSP sub module

all the Did related information is configured, The size of

the DID will be two bytes. The Data Identifier is

configured with security level and session level.

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 6 June 2020 | ISSN: 2320-28820

IJCRT2006105 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 760

B. Implemtation

.

Read data by Identifier service . In this paper we are

concentrating on the positive response for the requested

 entry

failed

Check the length of the incorrectMessageLengthOrIn

request message validFormat

 success

 Get Did indentifier

NO Did support service

 0x22 in active session?

 YES

 NO
SecurityAccessDenied DID security check ok?

 YES

 E_NOT_OK
 Set operation event Wait ConditionNotCorrect
 for ConditionRead Check

 E_OK
 E_NOT_OK
 Set operation event

 Wait for Read Data ConditionNotCorrect

 E_OK

 Store the response data

YES
 Further DID avaliable？

 NO

At least one DID is supported NO

Requestoutofrange

in the acitive session?

YES

Total response length exceeded

YES
Responsetoolong

NO

 Positive response

 Read DID service with multiple Data Identifier which are

 configured in the DSP container accordingly. To get the

 positive response for the Read Request these flow chat steps

This flow chart [4] will give the clear picture of are implemented.

implementing

http://www.ijcrt.org/

www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 6 June 2020 | ISSN: 2320-28820

IJCRT2006105 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 761

VI. RESULTS

At last, we test the Read DID Service by using Canoe. The

Test Result is tabulated below. The Read DID service is

requested with the Configured multiple DID of value and

the received response is validated by making use of Capl

Scripts.

Figure 1. Testing Environment

Channel Channel ID Name Event Type Direction Data Length Data

CAN1 0x72B Read DID Request CAN Frame Tx 8 0422DD0000000000

CAN1 0x62B Response CAN Frame Rx 8 0666DD000A120000

Figure 2.Test Result of Read DID

VII. CONCLUSION

This paper is all about sending the Read DID service
Request with multiple number of DID at a time by making

use of flow control frame and validating the positive
response received from the server. In future this service
different NRC can be tested.

VIII.ACKNOWLEDGMENT

I acknowledge our organization REVA university for all
support to do this work .

IX. REFERENCE

[1] AUTOSAR Development Partnership. Specification of DCM

www.autosar.org

[2] AUTOSAR Development Partnership. Specification of PduR

www.autosar.org

[3] AUTOSAR Development Partnership. Specification of CanTp

www.autosar.org

[4] XIE, Yue-yin, Z. H. O. U. Chao, and L. U. O. Feng. "Implementation

of Automotive Unified Diagnostic Services Based on AUTOSAR."
DEStech Transactions on Computer Science and Engineering itme
(2017).

[5] Di Natale, M., Zeng, H., Giusto, P., and Ghosal, A. , Understanding
and Using the Controller Area Network Communication Protocol,
Theory an d Practice, Springer, New York, NY, USA, 2012

[6] ISO15765-3-2004, Road Vehicles—Diagnostics on Controller Area
Networks (CAN)-Part 3: Implementation of Unified Diagnostic
Services (UDS on CAN), 2004

[7] Jun Jiang, “A network fault diagnostic approach based on a statistical
traffic normality prediction algorithm”, Global Telecommunications
Conference, 2003. GLOBECOM '03. IEEE,Vol: 5, pp: 2918 -
2922,2003

http://www.ijcrt.org/

